Axioms

  1. $\vdash A \rightarrow A$ Identity
  2. $\vdash (A \wedge B) \rightarrow A$ Simplification
  3. $\vdash (A \wedge B) \rightarrow B$ Simplification
  4. $\vdash A \rightarrow (A \lor B)$ Addition
  5. $\vdash B \rightarrow (A \lor B)$ Addition
  6. $\vdash (A \wedge (B \lor C)) \rightarrow ((A \wedge B) \lor C)$ Distribution
  7. $\vdash ((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow (B \land C))$ Strong Lattice $\land$
  8. $\vdash ((A \rightarrow C) \lor (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C)$ Strong Lattice $\lor$
  9. $\vdash \neg \neg A \rightarrow A$ Double Negation Elimination

Rules

R1.

$\vdash A$

$\vdash A \rightarrow B$


$\vdash B$ Modus Ponens

R2.

$\vdash A$

$\vdash B$


$\vdash A \land B$ Adjunction

R3.

$\vdash A \rightarrow B$


$\vdash (B \rightarrow C) \rightarrow (A \rightarrow C)$ Rule Suffixing

R4.

$\vdash A \rightarrow B$


$\vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$ Rule Prefixing